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ABSTRACT
When a search engine presents a set of document links, the
rates and characteristics of clicks on each link may be influ-
enced by display effects. Users may be more predisposed to
click on some positions than others, whether due to atten-
tion and reading order, their interpretation of the position
as additional relevance information, or other reasons. We
quantify this effect, and fit models for the influence of these
position effects on clickthrough. We also fit empirical prior
distributions to clickthrough rates, and use posterior esti-
mation as a smoother of empirical averages.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—correlation and regression analysis, distribution func-
tions; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—relevance feedback

General Terms
Measurement, relevance feedback, statistics

Keywords
Measurement, relevance feedback, statistics

1. INTRODUCTION
When a user issues a query to a search engine, they are

typically given a list of document summaries, which usually
consist of a title linking to the page and a sample of text
from the page.

Users’ probability of clicking on particular document links
is potentinally affected not only by the utility of the result
as percieved solely as a function of its title, URL, and text
summary, but also by the result summary’s position in the
list of results. Users may never read many of the summaries,
and they may be predisposed to use the search engine’s or-
dering as an indicator of relevance.

We use aggregated, anonymized data on historical searches
to formulate generative and predictive models of click prob-
abilities. In section 2, we find that the data is consistent
with a beta-binomial model, where the true clickthrough
probabilities of the population of results at a given posi-
tion have a beta distribution. Given a value of this prior,
and a certain number of impressions (views) of a result, the
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number of clicks is binomial distributed. In section 3, we
formulate a joint distribution of clickthrough probabilities
for a given result across multiple positions, which is consis-
tent with the beta marginal distributions. In section 4, we
find that this distribution accurately describes clickthrough
data, and yields a predictive model for clickthrough at one
position given the empirical clickthrough rate at another.
This algebraically simple model is as accurate as more com-
plex and arbitrarily flexible regression techniques, such as
cubic splines and kernel-smoothed moving averages.

These effects have also been studied for the commercial
Yahoo! search engine [2, 3, 1] and a Cornell University aca-
demic search engine [5, 6], using logs data to evaluate search
engines and their results, and controlling for the position ef-
fect by randomization or by inclusion as a model feature.
Another tack is the use of eye-tracking studies [4] to mea-
sure the distribution of attention across positions and click
probabilities conditional on attention.

2. SMOOTHING CLICKTHROUGH RATES
In this section we study the estimation of clickthrough

rates at a single display position. This will be a component
of the cross-position estimation of later sections, and will
motivate a joint distribution for the position effect model.

The empirical clickthrough rate of a result, the number
of clicks (ignoring duplicate clicks on the same result for
the same query) divided by the number of impressions or
views of the result at that position, is not necessarily the
best estimator of the true clickthrough probabality of the
result. If a query is observed once, each result will have
empirical clickthrough of 0 or 1, which is unrealistic as a
long-term rate. We wish to better estimate clickthrough
probability of a result at a given position before using it for
other purposes, such as projecting the result’s clickthrough
probability at another position.

Our knowledge about clickthrough rates across all results
and queries informs estimates for individual results. An em-
pirical clickthrough rate’s distance above or below average is
likely part sampling noise and part true signal. We can im-
prove our estimate of this true clickthrough probability by
regressing to the mean of the population for that position.

Knowing a prior distribution of clickthrough probabilities
allows derivation and use of estimates based on the posterior
distribution given the observed clicks and impressions.

The distribution of the number of clicks given the prior
clickthrough probability is taken to be binomial, as we only
count one query and one click per positon per user, and
we consider the users independent (despite the possibility of



one user issuing the same query from multiple computers or
mobile devices, for example).

We desire to fit a prior from data rather than choosing
one arbitrarily. A practical difficulty with estimating such
a prior is that true clickthrouh probabilities are never ob-
served. The distribution of empirical clickthrough rates has
different properties, such as point masses and a larger vari-
ance. If clickthrough had a uniform prior and we observed
only a single impression per result, the variance of click-
through rates would be that of a fair coin, 1/4, whereas the
variance of the uniform prior is 1/12.

The uniform is a special case of the beta distribution,
which is the conjugate prior to the binomial distribution
and fits clickthrough data with surprising accuracy. If the
prior of a unit interval valued random variable p is beta
distributed with parameters (α, β), and we then observe a
random variable X which is binomial distributed with pa-
rameters (n, p), the posterior distribution of p given X will
be beta (α+X,β + n). The posterior mean is then
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X

n

n
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+
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α+ β

α+ β

n+ α+ β

which can be interpreted as a linear shrinkage of the em-
pirical mean X

n
partway to the population mean α

α+β
, with

less shrinkage when the sample size n is larger and the em-
pirical mean more accurate.

We choose the beta prior parameters (α, β) via the method
of moments, matching the mean and variance of the model
to the empirical distribution. Rather than equating the em-
pirical mean and variance of clickthrough rates to the beta
directly, we equate them to the beta-binomial distribution
of clickthrough rates. Otherwise the variance will be over-
estimated, as in the uniform example above.

We use the method of moments rather than maximum
likelihood because it is computationally simpler, less out-
lier sensitive, and unbiased (the model and empirical means
match, leading to accurate predictions of population aggre-
gate clickthrough).

Denote the clickthrough rates as Yi = Xi
ni

for i = 1 to N .

Each Xi is distributed binomial (ni, pi) where the number
of impressions ni is observed and the unobserved pi are each
drawn independently from the same beta (α, β) prior.

Recall that a beta distribution has support on the unit in-
terval (0, 1), with density function p(x|α, β) = 1

B(α,β)
pα−1(1−

p)β−1, where B is the beta integral function B(α, β) =R 1

0
pα−1(1− p)β−1dp.

The mean of the clickthrough rates and underlying click
probabilites are the same:
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The second moment is
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Abbreviate the empirical averages

Figure 1: Quantile-quantile plots for first four po-
sitions, beta-binomial model of clickthrough vs em-
pirical
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We equate the observed moments to those of the model:

µ = α
α+β

ν = ζµ+ (1− ζ) (α+1)
(α+β+1)

µ

The method of moments estimates then arise from solving
these equations for α and β:

α = µ( µ(1−µ)(1−ζ)
ν−ζµ−(1−ζ)µ2 −1) β = (1−µ)( µ(1−µ)(1−ζ)

ν−ζµ−(1−ζ)µ2 −1)

Figure 1 shows four quantile-quantile plots, one for each
of the first four result positions. The X axes are the quan-
tiles of the beta-binomial distributions fit with the method
of moments, and the Y axes are quantiles of the empirical
clickthrough rates from a sample of 10,000 results at each
position. The parameters were fit from separate training
sets of 10,000 results per position.

A quantile-quantile plot will be a straight line through
points (0, 0) and (1, 1) iff the two distributions are the same
up to scalings and shifts (which in this case are fixed, as
both distributions range from 0 to 1). Each of these curves
has a correlation greater than .999. Even if the data arose
from the model distribution exactly, the lines will not be
perfectly straight, due to sampling variance. The quantile-
quantile correlations between bootstrap resamplings of the
clickthrough data had lower correlations for almost half the
resamplings, indicating that the error in the beta-binomial
is within the sampling variation of our dataset.

We can evaluate the usefulness of the posterior estimate
using these priors by using it to predict clickthrough rates
on test data from training data for the same results, and



comparing the error to that using empirical fractions as pre-
dictions. We made a random split of the aforementioned test
sets, in this case by splitting the individual impressions of
each result. For example, a result with 3 impressions might
have 1 impression in the training set and 2 impresions in the
test set.

We computed empirical and posterior clickthrough rates
for each result from the training half, and measured the L1
and L2 error between these and the empirical clickthrough
rate of the same result on the test half. We averaged these
errors across results in two ways, uniformly with respect to
each unique result, and weighed with respect to the number
of impressions. The latter represents the expected error on
a result drawn uniformly from web search traffic.

The posterior mean estimator had 20% to 34% lower error
than the empirical mean estimator, ranging across the pos-
sible combinations of position, error metric, and weighting.

3. A POSITION EFFECT MODEL
When transforming interval-valued clickthrough rates to

real-line valued variables via link functions such as logit and
probit, we do not observe elliptic-shaped data (as we would
with multivariate Gaussian data on this scale, for exam-
ple). The distribution is assymetric and tends to stay in the
lower triangle where clickthrough at lower display positions
is lower than at higher display positions.

We consider a generative model for clickthrough across
multiple positions, finding a joint distribution whose marginals
are consistent with the beta distributions found for individ-
ual positions. This leads to a choice of an algebraically sim-
ple prediction curve which performs as well as much higher-
dimensional parametric or nonparametric curves, such as
splines and kernel-smoothed moving averages, and outper-
forms regression on the ordinary, logarithmic, or logistic
scales.

The Dirichlet distribution is a well known joint distribu-
tion with beta marginals. When a set of independent gamma
random variables are divided by their sum, the resulting
marginals are beta distributed, and always sum to 1.

The correlation between clickthroughs for a result across
multiple positions is likely positive, and need not satisfy any
sum constraint exactly. Nevertheless, we can use the same
observation that a beta distribution arises from a ratio of
gammas.

Let X0, X1, X2, Y0, Y1, Y2 be gamma distributioned ran-
dom variables with the same scale parameter, say 1 without
loss of generality, and shape parameters a0, a1, a2, b0, b1.b2.
Recall that a gamma distribution with scale parameter θ
and shape parameter k has density xk−1e−x/θθ−k/Γ(k), sup-
ported on the positive real line, where Γ(k) =

R∞
0
tk−1e−tdt.

The sum of gammas with the same shape parameter are
gamma, and the ratio of a gamma to its sum with another
independent gamma is beta. So

Bi =
X0 +Xi

X0 +Xi + Y0 + Yi

are beta distributed, for i = 1, 2. In general B1 and B2

are nonnegatively correlated, and X0, Y0 reflect their depen-
dence.

Conditional on B1, the shared random variablesX0, Y0 are
each distributed as the product of a beta and a gamma ran-
dom variable: X0 = B1U1Z1 and Y0 = (1−B1)V1Z1, where

U1 is beta (a0, a1), V1 is beta (b0, b1), and Z1 is gamma
(a0 + a1 + b0 + b1), all independent. In fact Z1 is the de-
nominator X0 +X1 +Y0 +Y1 of B1, which is independent of
B1. These conditional distributions arise from this indepen-
dence: given B1, X0 +X1 is distributed as B1Z1, and then
the ratio U1 = X0

X0+X1
is beta (a0, a1) independently. The

distribution for Y0 follows from analogous considerations of
1−B1.

Meanwhile, X2 and Y2 are independent of B1. These con-
ditional distributions allow an estimate of B2 given B1 which
has the parameteric form of a first-order rational function

f(B1) =
c1B1 + c2
d1B1 + d2

where

c1 = (a0 + a1 + b0 + b1) a0
a0+a1

c2 = a2

d1 = (a0 + a1 + b0 + b1)( a0
a0+a1

− b0
b0+b1

)

d2 = a2 + b2 + (a0 + a1 + b0 + b1) b0
b0+b1

4. EMPIRICAL FITTING
Figure 2 is a quantile-quantile plot of the model (X axis)

vs the empirical (Y axis) distributions of the ratio of a re-
sult’s clickthrough at second position to its clickthrough
at first position. The model is the joint-beta distribution
from section 3, which we have already seen has consistent
marginals with the data. We find, as in this ratio exam-
ple, that the joint distribution is consistent from the data
as well.

Fitting the marginal distributions as in section 2 provides
four parameter constraints, αi = a0 + ai, βi = b0 + bi, for
i = 1, 2, leaving two free parameters. Extending the method
of moments to equate the empirical and model covariance
provides one additional constraint.

Also, positions are ordered in nature. Except for edge
effects at the bottom of a page, lower positions lead to lower
clickthrough. We can constrain the joint distribution thusly.

In the first-order rational function predictor, the condi-
tion that a higher position yield higher clickthrough can be
formulated as f(B1) ≤ B1 if f(B1) represents clickthrough
at a lower position, or f(B1) ≥ B1 if a higher position. The
former case implies 0 = f(0) = c2

d2
, so c2 = a2 = 0 and

a0 = α2. The latter case similarly implies b2 = 0.
Figure 3 shows a scatterplot of posterior clickthrough rates

for results observed at both the first (X axis) and second (Y
axis) positions. As expected, almost all the points lie in
the lower triangle, and the amount of mass in the upper
triangle is consistent with the binomial sampling variation.
Using posterior clickthrough estimates, as derived in section
2, leads to better prediction than using empirical click to
impression ratios.

The straight lines in figure 3 represent linear fits of click-
through at the second position y given the clickthrough at
the first position x, one fit to minimize expected squared er-
ror, and the other fit to minimize expected squared error on
the logarithmic scale. Note that such linear models y = c1

d1
x

are special cases of the above first-order rational function
model, with c2 = d2 = 0.

A logistic shift model y
1−y = c x

1−x is also a special case
of the first-order rational function, and maps both 0 to 0



Figure 2: Quantile-quantile plot of clickthrough ra-
tio between second and first positions, model vs em-
pirical distributions

Figure 3: Clickthrough at first vs second positions

and 1 to 1. Logarithmic or logistic models which scale as
well as shift, i.e. l(y) = s · l(x) + r where l(x) = log(x)
or l(x) = log x

1−x , will not obey the rules f(x) <= x or

f(x) >= x unless the slope is 1.
In figure 3, the green, monotone curved line represents the

fit of first-order rational function. The wavy blue line is a
kernel estimate, or weighted moving average.
f tracks the kernel estimate closely in the left half of the

graph, where the data is denser. In the right half, the mov-
ing average oscillates, indicating overfitting. A kernel which
adjusts its bandwidth based on the data density, or uni-
formly weights the k nearest neighbors, can be tuned so as
not to oscillate as much. Given enough data, the kernel
regression, or a cubic spline with an increasing number of
knots, will converge to the true conditional mean of the re-
sponse given the predictor, and can thus be thought of as a
noisy ground truth.

When using a training and test data split, the first-order
rational model has slightly lower absolute or squared er-
ror than kernel estimates or cubic splines with many more
parameters. We interpret this to mean that the model is
very predictively accurate given its simplicity, and by con-
struction is consistent with the generative distributions of
clickthrough rates.

5. DISCUSSION
We have seen that the distributional properties of click-

through rates are amenable to classical parametric models,
which motivate prediction rules as accurate as other higher-
parameter or nonparametric models.

Even with the correct distributional knowledge, prediction
of clickthrough for a given result and position has a certain
natural variance. The dispersion of points in figure 3 is
greater than that from the binomial variation alone.

A general clickthrough prediction model can use other fea-
tures about the query, the result, and the other displayed
results (such as their clickthrough) to reduce the remaining
variation. These features can be thought of as explanatory
variables for the variation in the beta prior of clickthrough.
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